A GPU-Accelerated Parallel Preconditioner for the Solution of the Boltzmann Transport Equation for Semiconductors

نویسندگان

  • Karl Rupp
  • Ansgar Jüngel
  • Tibor Grasser
چکیده

The solution of large systems of linear equations is typically achieved by iterative methods. The rate of convergence of these methods can be substantially improved by the use of preconditioners, which can be either applied in a black-box fashion to the linear system, or exploit properties specific to the underlying problem for maximum efficiency. However, with the shift towards multiand many-core computing architectures, the design of sufficiently parallel preconditioners is increasingly challenging. This work presents a parallel preconditioning scheme for a state-of-theart semiconductor device simulator and allows for the acceleration of the iterative solution process of the resulting system of linear equations. The method is based on physical properties of the underlying system of partial differential equations and results in a block preconditioner scheme, where each block can be computed in parallel by established serial preconditioners. The efficiency of the proposed scheme is confirmed by numerical experiments using a serial incomplete LU factorization preconditioner, which is accelerated by one order of magnitude on both multi-core central processing units and graphics processing units with the proposed scheme.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Quantum Statistical Mechanical Theory of Transport Processes

A new derivation of the quantum Boltzmann transport equation for the Fermion system from the quantum time evolution equation for the wigner distribution function is presented. The method exhibits the origin of the time - irreversibility of the Boltzmann equation. In the present work, the spin dependent and indistinguishibility of particles are also considered.

متن کامل

Parallel Deterministic Solution of the Boltzmann Transport Equation for Semiconductors

Clock frequencies and hence single-threaded processing power of modern processors have saturated because of power constraints. As a consequence, the overall processing power in modern processors mostly stems from parallelization and vectorization. However, parallel processors can only be used efficiently with suitable parallel algorithms. Unfortunately, the design and implementation of such par...

متن کامل

Parallel Implementation of Particle Swarm Optimization Variants Using Graphics Processing Unit Platform

There are different variants of Particle Swarm Optimization (PSO) algorithm such as Adaptive Particle Swarm Optimization (APSO) and Particle Swarm Optimization with an Aging Leader and Challengers (ALC-PSO). These algorithms improve the performance of PSO in terms of finding the best solution and accelerating the convergence speed. However, these algorithms are computationally intensive. The go...

متن کامل

A GPU-accelerated Direct-sum Boundary Integral Poisson-Boltzmann Solver

In this paper, we present a GPU-accelerated direct-sum boundary integral method to solve the linear Poisson-Boltzmann (PB) equation. In our method, a well-posed boundary integral formulation is used to ensure the fast convergence of Krylov subspace based linear algebraic solver such as the GMRES. The molecular surfaces are discretized with flat triangles and centroid collocation. To speed up ou...

متن کامل

Implementation of the direction of arrival estimation algorithms by means of GPU-parallel processing in the Kuda environment (Research Article)

Direction-of-arrival (DOA) estimation of audio signals is critical in different areas, including electronic war, sonar, etc. The beamforming methods like Minimum Variance Distortionless Response (MVDR), Delay-and-Sum (DAS), and subspace-based Multiple Signal Classification (MUSIC) are the most known DOA estimation techniques. The mentioned methods have high computational complexity. Hence using...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011